Dating of a German lake sediment with high human impact

M. Perez-Mayo1,2, D. Pittauer2, H.W. Fischer1

1Institute of Environmental Physics, University of Bremen, Bremen, 28359, Germany
2MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, 28359, Germany
manuel@iup.physik.uni-bremen.de

Introduction

Chronology using 210Pb\textsubscript{m}

Sediment Chronology using classical models is based on determining the unsupported 210Pb\textsubscript{m} which reaches the lake surface. The unsupported 210Pb\textsubscript{m} can be determined by subtracting from the total activity signal the supported activity which is continuously produced within the sediment and assuming secular equilibrium between 226Ra and the daughter products.

Goals

In this work we attempted to use both classical models in a lake environment where models assumptions (CF-CS: constant flux and constant sedimentation) and (CRS: constant rate of 210Pb\textsubscript{m} supply) might not be fulfilled (Abril 2004, Sanchez-Cabeza and Ruiz-Fernández 2012).

In this aspect, extra information about the time events happened in the vicinity of the sampling area will be used as "markers" (Tab. 1).

Methods

Sampling

The sampling point is located in the deeper part of the lake Arendsee, situated in northern Germany (52° 53'21" N, 11° 28'27" E). It has a maximal depth of 48 m and an average depth of 29 m. The hydraulic residence time of the water is 50-60yr on average (Fig. 2).

The Arendsee is a dimictic, eutrophic karst lake in the activity. Until 1896 it was oligotrophic, in 1960 mesotrophic and finally in 1972 changed to eutrophic lake.

The core was extracted on October 2014. After the extraction it was sliced into 1cm layers, freeze-dried, homogenized by grinding, pressed into pellets and sealed using radon-tight aluminum barrier foil. After sealing, samples were stored during at least 3 weeks awaiting the secular equilibrium between 226Ra and 210Pb\textsubscript{m}.

Detection

A HPGe detector with carbon window housed in a 10 cm Pb shielding with Cu, Cd and plastic inner linings and operated by Genie 2000 software was used. Efficiencies had been generated using LabSOCS software.

Results

Measurements

Results from the gamma-spectrometric determinations are presented in Fig. 3. The fit function was calculated using the upper and lower part of the 210Pb\textsubscript{m} and avoid the region of high impact. Afterward historical points were compared with chronology implemented using 210Pb\textsubscript{m} (Fig.4).

Results indicate a partial agreement between the sedimentation rates derived by both models (Fig.4) in time-spaces where no human impact was done. Chronologies with both models show comparables values in the upper part but with progressive disagree in the temporal region between 1970 and 1996 (19-44yr).

After than between 44-57.5yr parallel chronology can observed again. The lower part of the core presents different chronologies with a high uncertainty.

Values of the Sedimentation rates \(R_s \) show acceptable values in almost all profile of the core with exception in the depth 12-15cm where the Ca-rich layer was found.

Conclusions and outlook

It could be shown that both models can be used for calculation of the sedimentation rate and to produce a sedimentation chronology. The results also show how a lake with high impact can be dated based on the use of historical time points like “markers” and expected areas where the 210Pb\textsubscript{m} show exponential decrease.

The chronology developed in this work in cooperation with has been implemented (Rothe 2015) and supported by Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB).

References

![Fig. 2. Location of the sediment core. Source: openstreetmap.org](https://example.com/image1)

![Fig. 3. Depth distribution of the excess 210Pb for lake Arendsee together with activity concentration of 40K, 210Pb and 137Cs.](https://example.com/image2)

![Fig. 4. Chronology of sediments from lake Arendsee. Comparison of the depth vs. age using models CF-CS (blue points) and CRS (red points). Sedimentation rates \(R_s \) are plotted for both models.](https://example.com/image3)