Natural and man-made gamma emitters in Gulf of Eilat / Aqaba sediments

Daniela Pittauerová ${ }^{1} \quad$ Gerald Kirchner ${ }^{2}$ Dieter Garbe-Schönberg ${ }^{3}$ Ami Nishri ${ }^{4}$ Barak Herut ${ }^{4}$ Helmut W. Fischer ${ }^{1}$
${ }^{1}$ University of Bremen, Institute for Environmental Physics, Germany
${ }^{2}$ Bundesamt für Strahlenschutz, Berlin, Germany
${ }^{3}$ Israel Oceanographic and Limnological Research, Haifa, Israel
${ }^{4}$ Christian-Albrechts-University of Kiel, Institute of Geosciences, Kiel, Germany

Table of contents

1 Motivation
2 Experimental
－Sampling
－Measurement
3 Results
－ $\mathrm{Pb}-210$ and $\mathrm{Cs}-137$ sedimentation rates
－ $\mathrm{Pb}-210$ and Cs －137 inventories and fluxes
－Th series radionuclides
－Ra－226
4 Summary

Gulf of Eilat

UU) Universität Bremen

Motivation

－Last century＇s accelerated anthropogenic pollution and input of nutrients \rightarrow negative effect on marine environment in Gulf of Eilat／Aqaba（GOE）－coral reefs and marine life biodiversity．
■ Gamma emitting radionuclides in sediment cores analyzed within a study of sources and effects of particulate phosphorous in GOE．
■ Particulate phosphorous sources：mariculture，sewage and phosphate ore dust from industrial ports in Aqaba and Eilat．
－Estimated P release from the port of Eilat：$\geq 8 \cdot 10^{6} \mathrm{~mol} \mathrm{P}$ ， Aqaba port approximately 10－fold higher．
－No previous publications on radionuclides in sediment profiles， sedimentation rates and radionuclide inventories from the studied area．

Sampling: sediments

- Five short sediment cores taken during 2007-2008
- St. F and HHN2C: shallow (240-316 m)
- St. A2 and HHN3: deeper part of Eilat subbasin (600-700 m)
■ St. B: further south in Eilat deep (800 m), a reduced effect of anthropogenic pollution expected

Sampling: sediments

- Five short sediment cores taken during 2007-2008
- St. F and HHN2C: shallow (240-316 m)
- St. A2 and HHN3: deeper part of Eilat subbasin (600-700 m)
- St. B: further south in Eilat deep (800 m), a reduced effect of anthropogenic pollution expected

Motivation Experimental Results Summary

Measurements

Gamma spectrometry

- Samples hermetically sealed - waited for equilibrium for ${ }^{226} \mathrm{Ra}$ determination
■ Low-level low-background γ-spec., 50\% HPGe coaxial detector
- LabSOCS for a characterized detector used for efficiency calculations - variable geometries
- Cascade summing corrections applied
- Samples: 1-10 g
- Counting times: 2-3 days for small samples, 1-2 days for larger samples
- Gamma emitters: ${ }^{210} \mathrm{~Pb},{ }^{226} \mathrm{Ra}\left({ }^{214} \mathrm{~Pb},{ }^{214} \mathrm{Bi}\right),{ }^{40} \mathrm{~K},{ }^{228} \mathrm{Ra}$ $\left({ }^{228} \mathrm{Ac}\right),{ }^{228} \mathrm{Th}\left({ }^{212} \mathrm{~Pb},{ }^{208} \mathrm{TI}\right),{ }^{137} \mathrm{Cs}$

Age models

${ }^{210} \mathrm{~Pb}_{\text {xs }}$

－Constant flux－constant sedimentation（CF－CS）model
－Variations in depth profile likely to be caused by other factors than changes of sedimentation rate

Age models

${ }^{210} \mathrm{~Pb}_{\text {xs }}$

- Constant flux - constant sedimentation (CF-CS) model
- Variations in depth profile likely to be caused by other factors than changes of sedimentation rate

${ }^{137} \mathrm{Cs}$

- Additional tracer

■ Main source: global weapon test fallout, minimal effect of Chernobyl fallout

- No clear 1963 maxima in profiles

■ Instead, "exponential" decay in some profiles: attempt to use the same CF-CS model

Shallow core HHN2C

Shallow core HHN2C

Activity concentration（Bq． kg^{-1} ）

$$
\begin{aligned}
& r\left({ }^{210} P b_{x s}\right) \\
& 0.076 \pm 0.008 \mathrm{~g} \cdot \mathrm{~cm}^{-2} y r^{-1}
\end{aligned}
$$

$r\left({ }^{137} C s\right)$
$0.082 \pm 0.030 \mathrm{~g} \cdot \mathrm{~cm}^{-2} \mathrm{yr}^{-1}$

Deep core HHN3

Deep core HHN3

$$
\begin{aligned}
& r\left({ }^{210} P b_{x s}\right) \\
& 0.16 \pm 0.04 \mathrm{~g} \cdot \mathrm{~cm}^{-2} y r^{-1} \\
& r\left({ }^{137} C s\right) \\
& 0.11 \pm 0.03 \mathrm{~g} \cdot \mathrm{~cm}^{-2} y r^{-1}
\end{aligned}
$$

Inventories of ${ }^{210} \mathbf{P b}_{x s}\left(B q \cdot m^{-2}\right)$

	${ }^{210} \mathrm{~Pb}_{x s}$	
Core	Inventory $B q \cdot \mathrm{~m}^{-2}$	Flux $\mathrm{Bq} \cdot \mathrm{m}^{-2} y^{-1}$
F	5400 ± 1100	167 ± 33
HHN2C	2580 ± 300	80.6 ± 9.5
HHN3	4420 ± 300	138.1 ± 9.5
A2	6200 ± 1200	195 ± 35
B	5090 ± 310	-

A mean atmospheric flux over continents in latitudal band $10^{\circ}-30^{\circ} \mathrm{N}$: $160 \mathrm{~Bq} \cdot \mathrm{~m}^{-2} \mathrm{yr}^{-1}$ (global compilation, Preiss et al. 1996).

Inventories of ${ }^{137} \mathrm{Cs}\left(\mathrm{Bq} \cdot \mathrm{m}^{-2}\right)$

Core	Inventory $B q \cdot m^{-2}$
F	$\geq 329 \pm 59$
HHN2C	215 ± 16
HHN3	538 ± 28
A2	501 ± 65
B	$\geq 400 \pm 26$

ADDITIONAL：Global weapon test fallout，Middle East：${ }^{137} \mathrm{Cs}$

■ Data：Environmental Measurements Laboratory Global Fallout Deposition program（on－line database）．The measurement series not continuous（full／empty symbols）．
■ ${ }^{90} \mathrm{Sr} \rightarrow{ }^{137} \mathrm{Cs}$ ：constant ratio $\mathrm{Cs} / \mathrm{Sr}=1.5$ assumed
■ Solid line：an estimate of fallout in GOE based on UNSCEAR （2000）deposition history scaled to maximal yearly fallout estimate．

ADDITIONAL：Global weapon test fallout，Middle East：${ }^{137} \mathrm{Cs}$

■ Fallout varies with latitude and rainfall．
■ Maximum ${ }^{137}$ Cs yearly fallout（in 1963）vs．annual rainfall． Full symbols represent actual measured values，empty symbols extrapolation when 1963 value was not available．
■ The maximum（1963）at GOE estimated $50-75 \mathrm{~Bq} \cdot \mathrm{~m}^{-2} \mathrm{yr}^{-1}$ ．
■ Total fallout：240－360 Bq $\cdot \mathrm{m}^{-2}$（decay corrected to 2007）．

Global weapon test fallout，Middle East：${ }^{137}$ Cs

■ Compilation of data：Environmental Measurements Laboratory Global Fallout Deposition program（on－line database）－ 6 stations in Syria，Iran，Lebanon，Egypt and Saudi Arabia．
■ Fallout varies with latitude and rainfall．
■ Total fallout in Eilat：240－360 Bq $\cdot \mathrm{m}^{-2}$（decay corrected to 2007）．
■ Inventories measured within the study：up to $540 \mathrm{~Bq} \cdot \mathrm{~m}^{-2}$
－ $33-56 \%{ }^{137} \mathrm{Cs}$ not deposited directly，rather erosion derived

Th series radionuclides

■ Gamma emitters：${ }^{228} \mathrm{Ra}$ and ${ }^{228} \mathrm{Th}$
－${ }^{232}$ Th measured by ICP－MS

Th series radionuclides

$$
\begin{aligned}
{ }^{228} R a(t) & ={ }^{232} T h(0) \cdot\left(1-e^{-\lambda_{2} t}\right)+{ }^{228} R a(0) \cdot e^{-\lambda_{2} t} \\
{ }^{228} T h(t) & =\lambda_{3} \cdot \lambda_{2} \cdot{ }^{232} \operatorname{Th}(0) \cdot\left(\frac{1}{\lambda_{2} \cdot \lambda_{3}}-\frac{e^{-\lambda_{2} t}}{\lambda_{2}\left(\lambda_{3}-\lambda_{2}\right)}-\frac{e^{-\lambda_{3} t}}{\lambda_{3}\left(\lambda_{2}-\lambda_{3}\right)}\right)+ \\
& +\frac{\lambda_{3}}{\lambda_{3}-\lambda_{2}} \cdot{ }^{228} \operatorname{Ra}(0) \cdot\left(e^{-\lambda_{2} t}-e^{-\lambda_{3} t}\right)+{ }^{228} T h(0) \cdot e^{-\lambda_{3} t}
\end{aligned}
$$

Th series radionuclides－excess ${ }^{228} \mathrm{Th}$

${ }^{228} \mathrm{Ra},{ }^{228} \mathrm{Th}$ activity concentrations（Bq． kg^{-1} ）

Th series radionuclides - excess ${ }^{228} \mathrm{Th}$

${ }^{223} \mathrm{Th}_{\mathrm{xs}}$ activity concentration (Bq. kg^{-1})

- Valuable additional information: the core tops were deposited very recently - $\mathrm{T}_{1 / 2}\left({ }^{228} \mathrm{Th}\right)=1.9 \mathrm{yr}$.
- Application of a simple CF-CS model leads to several times higher accumulation rates ($0.3-0.7 \mathrm{~g} \cdot \mathrm{~cm}^{-2} \mathrm{yr}^{-1}$) than ${ }^{210} \mathrm{~Pb}$ and ${ }^{137} \mathrm{Cs}$ model.
■ Reasons: Bioturbation? Ra diffusion? Recent sedimentation rate acceleration? Recent reduction of ${ }^{228} \mathrm{Th}_{x s}$ flux?
Postdepositional redistribution?

${ }^{226} \mathrm{Ra}$－increase in upper parts of the profiles

${ }^{226}$ Ra " $\times s^{\prime \prime}$ inventories

Core	Top interval cm	$\mu_{\text {top }}$ $B q \cdot \mathrm{~kg}^{-1}$	$\mu_{\text {bottom }}$ $B q \cdot \mathrm{~kg}^{-1}$	t-value	P-value	Inventory of ${ }^{226} \mathrm{Ra}$ " $\times s^{\prime \prime}$ $B q \cdot \mathrm{~m}^{-2}$
HHN2C	4.5	33.7	25.4	6.242	0.0004	320 ± 30
HHN3	3.5	40.9	29.5	6.627	0.0004	300 ± 30
A2	3.0	39.0	21.5	5.670	0.0002	410 ± 90
B	5.5	34.8	24.5	5.273	0.0001	440 ± 30

- Increase of ${ }^{226} \mathrm{Ra}$ in the top sections $(3-5.5 \mathrm{~cm})$ of 4 cores is statistically significant.
■ Phosphate: $1200 \mathrm{~Bq} \cdot \mathrm{~kg}^{-1}{ }^{226} \mathrm{Ra}$
■ Estimated phosphate dust release since 1965: $17 \cdot 10^{3} \mathrm{t}$

${ }^{226}$ Ra " $\times s^{\prime \prime}$ inventories

Core	Top interval cm	$\mu_{\text {top }}$ $B q \cdot \mathrm{~kg}^{-1}$	$\mu_{\text {bottom }}$ $B q \cdot \mathrm{~kg}^{-1}$	t-value	P-value	Inventory of ${ }^{226} \mathrm{Ra}$ " $\times s^{\prime \prime}$ $B q \cdot \mathrm{~m}^{-2}$
HHN2C	4.5	33.7	25.4	6.242	0.0004	320 ± 30
HHN3	3.5	40.9	29.5	6.627	0.0004	300 ± 30
A2	3.0	39.0	21.5	5.670	0.0002	410 ± 90
B	5.5	34.8	24.5	5.273	0.0001	440 ± 30

- Increase of ${ }^{226} \mathrm{Ra}$ in the top sections ($3-5.5 \mathrm{~cm}$) of 4 cores is statistically significant.
- Phosphate: $1200 \mathrm{~Bq} \cdot \mathrm{~kg}^{-1}{ }^{226} \mathrm{Ra}$

■ Estimated phosphate dust release since 1965: $17 \cdot 10^{3} \mathrm{t}$
If phosphate dust responsible for ${ }^{226} \mathrm{Ra}$ increase:

- 300-440 Bq $\cdot \mathrm{kg}^{-1} \rightarrow 0.25-0.36 \mathrm{~kg} \cdot \mathrm{~m}^{-2}$ of phosphate accumulated on the seabed
- Over the area of $40 \mathrm{~km}^{2} \rightarrow(10.0-14.4) \cdot 10^{3} \mathrm{t}$ of phosphate

Summary

Accumulation rates，inventories
－Based on ${ }^{210} \mathrm{~Pb}$ and ${ }^{137} \mathrm{Cs}$ CF－CS model： $0.076-0.22$ $\mathrm{g} \cdot \mathrm{cm}^{-2} \mathrm{yr}^{-1}$
－${ }^{137} \mathrm{Cs}$ ：rather continuous erosion supported input，instead of direct fallout

Summary

Accumulation rates，inventories
－Based on ${ }^{210} \mathrm{~Pb}$ and ${ }^{137} \mathrm{Cs}$ CF－CS model： $0.076-0.22$ $\mathrm{g} \cdot \mathrm{cm}^{-2} \mathrm{yr}^{-1}$
－${ }^{137} \mathrm{Cs}$ ：rather continuous erosion supported input，instead of direct fallout

Th series radionuclides
－${ }^{228} \mathrm{Th}_{x s}$ found in core tops：very fresh sediment
－Common dating model（CF－CS）not applicable

Summary

Accumulation rates，inventories
－Based on ${ }^{210} \mathrm{~Pb}$ and ${ }^{137} \mathrm{Cs}$ CF－CS model： $0.076-0.22$
$\mathrm{g} \cdot \mathrm{cm}^{-2} \mathrm{yr}^{-1}$
－${ }^{137} \mathrm{Cs}$ ：rather continuous erosion supported input，instead of direct fallout

Th series radionuclides

－${ }^{228} \mathrm{Th}_{\mathrm{xs}}$ found in core tops：very fresh sediment
－Common dating model（CF－CS）not applicable

${ }^{226} \mathrm{Ra}$

－Increased ${ }^{226}$ Ra activities in core tops：likely to be caused by contribution of phosphate dust from Eilat and Aqaba industrial ports．
－（10．0－14．4）$\cdot 10^{3} \mathrm{t}$ of phosphate material deposited at a seabed of studied area．

Acknowledgments

■ Funding：German Ministry of Science and Technology，Joint German－Israeli project number GR1952
■ Traveling grant：PIP（Physics International Postgraduate）， University of Bremen

Bundesministerium für Bildung und Forschung

Thank you for your attention！

