Natural and man-made gamma emitters in Gulf of Eilat / Aqaba sediments

Daniela Pittauerová¹ Gerald Kirchner² Dieter Garbe-Schönberg³ Ami Nishri⁴ Barak Herut⁴ Helmut W. Fischer¹

¹University of Bremen, Institute for Environmental Physics, Germany

²Bundesamt für Strahlenschutz, Berlin, Germany

³Israel Oceanographic and Limnological Research, Haifa, Israel

⁴Christian-Albrechts-University of Kiel, Institute of Geosciences, Kiel, Germany

Table of contents

1 Motivation

2 Experimental

- Sampling
- Measurement
- 3 Results
 - Pb-210 and Cs-137 sedimentation rates
 - Pb-210 and Cs-137 inventories and fluxes
 - Th series radionuclides
 - Ra-226

4 Summary

Gulf of Eilat

Motivation

- Last century's accelerated anthropogenic pollution and input of nutrients → negative effect on marine environment in Gulf of Eilat / Aqaba (GOE) - coral reefs and marine life biodiversity.
- Gamma emitting radionuclides in sediment cores analyzed within a study of sources and effects of particulate phosphorous in GOE.
- Particulate phosphorous sources: mariculture, sewage and phosphate ore dust from industrial ports in Aqaba and Eilat.
- Estimated P release from the port of Eilat: $\geq 8 \cdot 10^6$ mol P, Aqaba port approximately 10-fold higher.
- No previous publications on radionuclides in sediment profiles, sedimentation rates and radionuclide inventories from the studied area.

Sampling: sediments

- Five short sediment cores taken during 2007-2008
- St. F and HHN2C: shallow (240-316 m)
- St. A2 and HHN3: deeper part of Eilat subbasin (600-700 m)
- St. B: further south in Eilat deep (800 m), a reduced effect of anthropogenic pollution expected

Motivation Experimental Results Summary

Sampling: sediments

- Five short sediment cores taken during 2007-2008
- St. F and HHN2C: shallow (240-316 m)
- St. A2 and HHN3: deeper part of Eilat subbasin (600-700 m)
- St. B: further south in Eilat deep (800 m), a reduced effect of anthropogenic pollution expected

Motivation Experimental Results Summary

Motivation Experimental Results Summary

Measurements

Gamma spectrometry

- Samples hermetically sealed waited for equilibrium for ²²⁶Ra determination
- \blacksquare Low-level low-background $\gamma-{\rm spec.}$, 50% HPGe coaxial detector
- LabSOCS for a characterized detector used for efficiency calculations - variable geometries
- Cascade summing corrections applied
- Samples: 1-10 g
- Counting times: 2-3 days for small samples, 1-2 days for larger samples
- Gamma emitters: ²¹⁰Pb, ²²⁶Ra (²¹⁴Pb, ²¹⁴Bi), ⁴⁰K, ²²⁸Ra (²²⁸Ac), ²²⁸Th (²¹²Pb, ²⁰⁸Tl), ¹³⁷Cs

Age models

²¹⁰Pb_{xs}

- Constant flux constant sedimentation (CF-CS) model
- Variations in depth profile likely to be caused by other factors than changes of sedimentation rate

Age models

$^{210}\text{Pb}_{xs}$

- Constant flux constant sedimentation (CF-CS) model
- Variations in depth profile likely to be caused by other factors than changes of sedimentation rate

¹³⁷Cs

- Additional tracer
- Main source: global weapon test fallout, minimal effect of Chernobyl fallout
- No clear 1963 maxima in profiles
- Instead, "exponential" decay in some profiles: attempt to use the same CF-CS model

Shallow core HHN2C

Motivation Experimental Results Summary

9 / 24

∢∄⊁ ∢ ≣ ⊁

Shallow core HHN2C

Activity concentration (Bq.kg⁻¹) 210Pb ¹³⁷Cs 10 100 0 0 5 Mass depth (g.cm⁻²) 10 15 HHN2C 20

r $(^{210}Pb_{xs})$ $0.076\pm0.008 \ g \cdot cm^{-2}yr^{-1}$ r (^{137}Cs) $0.082\pm0.030 \ g \cdot cm^{-2}yr^{-1}$

Motivation Experimental Results Summary

9/24

Deep core HHN3

Motivation Experimental Results Summary

10/24

∢ ∰ ⊁ ∢ ≣ ⊁

Deep core HHN3

r
$$(^{210}Pb_{xs})$$

 $0.16\pm0.04 \ g \cdot cm^{-2}yr^{-1}$
r (^{137}Cs)
 $0.11\pm0.03 \ g \cdot cm^{-2}yr^{-1}$

Motivation Experimental Results Summary

10 / 24

Inventories of ²¹⁰Pb_{xs} ($Bq \cdot m^{-2}$)

	²¹⁰ Pb _{xs}			
Core	Inventory	Flux		
	$Bq \cdot m^{-2}$	$Bq \cdot m^{-2}yr^{-1}$		
F	5400 ± 1100	167±33		
HHN2C	2580 ± 300	$80.6 {\pm} 9.5$		
HHN3	4420±300	$138.1 {\pm} 9.5$		
A2	6200 ± 1200	195±35		
В	$5090{\pm}310$	-		

A mean atmospheric flux over continents in latitudal band $10^{\circ}-30^{\circ}$ N: $160 \text{ } Bq \cdot m^{-2}yr^{-1}$ (global compilation, Preiss et al. 1996).

Motivation Experimental Results Summary

∢ ∰ ⊁ ∢ ≣ ⊁

Inventories of ¹³⁷Cs ($Bq \cdot m^{-2}$)

Core	Inventory			
	$Bq \cdot m^{-2}$			
F	\geq 329 \pm 59			
HHN2C	$215{\pm}16$			
HHN3	$538{\pm}28$			
A2	$501{\pm}65$			
В	\geq 400 \pm 26			

Motivation Experimental Results Summary

ADDITIONAL: Global weapon test fallout, Middle East: ¹³⁷Cs

- Data: Environmental Measurements Laboratory Global Fallout Deposition program (on-line database). The measurement series not continuous (full / empty symbols).
- \blacksquare ${}^{90}\text{Sr} \rightarrow {}^{137}\text{Cs:}$ constant ratio Cs/Sr=1.5 assumed
- Solid line: an estimate of fallout in GOE based on UNSCEAR (2000) deposition history scaled to maximal yearly fallout estimate.

13/24

< 🗗 ►

ADDITIONAL: Global weapon test fallout, Middle East: ¹³⁷Cs

- Fallout varies with latitude and rainfall.
- Maximum ¹³⁷Cs yearly fallout (in 1963) vs. annual rainfall. Full symbols represent actual measured values, empty symbols extrapolation when 1963 value was not available.
- The maximum (1963) at GOE estimated 50–75 $Bq \cdot m^{-2}yr^{-1}$.
- Total fallout: 240–360 $Bq \cdot m^{-2}$ (decay corrected to 2007).

14 / 24

< 67

Global weapon test fallout, Middle East: ¹³⁷Cs

- Compilation of data: Environmental Measurements Laboratory Global Fallout Deposition program (on-line database) - 6 stations in Syria, Iran, Lebanon, Egypt and Saudi Arabia.
- Fallout varies with latitude and rainfall.
- Total fallout in Eilat: 240–360 $Bq \cdot m^{-2}$ (decay corrected to 2007).
- Inventories measured within the study: up to 540 $Bq \cdot m^{-2}$
- 33–56% ¹³⁷Cs not deposited directly, rather erosion derived

Th series radionuclides

- Gamma emitters: ²²⁸Ra and ²²⁸Th
- ²³²Th measured by ICP-MS

Th series radionuclides

17 / 24

Th series radionuclides - excess ²²⁸Th

Motivation Experimental Results Summary

18 / 24

Th series radionuclides - excess ²²⁸Th

- Valuable additional information: the core tops were deposited very recently $T_{1/2}$ (²²⁸Th)=1.9 yr.
- Application of a simple CF-CS model leads to several times higher accumulation rates (0.3–0.7 $g \cdot cm^{-2}yr^{-1}$) than ²¹⁰Pb and ¹³⁷Cs model.
- Reasons: Bioturbation? Ra diffusion? Recent sedimentation rate acceleration? Recent reduction of ²²⁸Th_{xs} flux? Postdepositional redistribution?

Motivation Experimental Results Summary

$^{\rm 226}\rm Ra$ - increase in upper parts of the profiles

Motivation Experimental Results Summary

$^{226}Ra_{"_{\! X\!S''}}$ inventories

Core	Top interval	μ_{top}	μ_{bottom}	t-value	P-value	Inventory of ²²⁶ Ra _{"xs"}
	cm	$Bq\cdot kg^{-1}$	$Bq\cdot kg^{-1}$			$Bq \cdot m^{-2}$
HHN2C	4.5	33.7	25.4	6.242	0.0004	320 ± 30
HHN3	3.5	40.9	29.5	6.627	0.0004	300 ± 30
A2	3.0	39.0	21.5	5.670	0.0002	410 ± 90
В	5.5	34.8	24.5	5.273	0.0001	440 ± 30

- Increase of ²²⁶Ra in the top sections (3–5.5 cm) of 4 cores is statistically significant.
- Phosphate: 1200 $Bq \cdot kg^{-1}$ ²²⁶Ra
- Estimated phosphate dust release since 1965: $17 \cdot 10^3$ t

$^{226}Ra_{"xs''}$ inventories

Core	Top interval	μ_{top}	$\mu_{\textit{bottom}}$	t-value	P-value	Inventory of ²²⁶ Ra _{"xs"}
	cm	$Bq \cdot kg^{-1}$	$Bq\cdot kg^{-1}$			$Bq \cdot m^{-2}$
HHN2C	4.5	33.7	25.4	6.242	0.0004	320 ± 30
HHN3	3.5	40.9	29.5	6.627	0.0004	300 ± 30
A2	3.0	39.0	21.5	5.670	0.0002	410 ± 90
В	5.5	34.8	24.5	5.273	0.0001	440 ± 30

- Increase of ²²⁶Ra in the top sections (3–5.5 cm) of 4 cores is statistically significant.
- Phosphate: 1200 $Bq \cdot kg^{-1}$ ²²⁶Ra
- Estimated phosphate dust release since 1965: $17 \cdot 10^3$ t

If phosphate dust responsible for ²²⁶Ra increase:

- 300–440 $Bq \cdot kg^{-1} \rightarrow$ 0.25–0.36 $kg \cdot m^{-2}$ of phosphate accumulated on the seabed
- \blacksquare Over the area of 40 $\textit{km}^2 \rightarrow (10.0-14.4) \cdot 10^3$ t of phosphate

Summary

Accumulation rates, inventories

- Based on ²¹⁰Pb and ¹³⁷Cs CF-CS model: 0.076–0.22 g · cm⁻²vr⁻¹
- ¹³⁷Cs: rather continuous erosion supported input, instead of direct fallout

Summary

Accumulation rates, inventories

- Based on ²¹⁰Pb and ¹³⁷Cs CF-CS model: 0.076–0.22 g · cm⁻²yr⁻¹
- ¹³⁷Cs: rather continuous erosion supported input, instead of direct fallout

Th series radionuclides

- \blacksquare $^{228} Th_{xs}$ found in core tops: very fresh sediment
- Common dating model (CF-CS) not applicable

Summary

Accumulation rates, inventories

- Based on ²¹⁰Pb and ¹³⁷Cs CF-CS model: 0.076–0.22 g · cm⁻²yr⁻¹
- ¹³⁷Cs: rather continuous erosion supported input, instead of direct fallout

Th series radionuclides

- \blacksquare $^{228}Th_{xs}$ found in core tops: very fresh sediment
- Common dating model (CF-CS) not applicable

²²⁶Ra

- Increased ²²⁶Ra activities in core tops: likely to be caused by contribution of phosphate dust from Eilat and Aqaba industrial ports.
- $\blacksquare~(10.0-14.4)\cdot 10^3$ t of phosphate material deposited at a seabed of studied area.

Acknowledgments

 Funding: German Ministry of Science and Technology, Joint German-Israeli project number GR1952

 Traveling grant: PIP (Physics International Postgraduate), University of Bremen

Bundesministerium für Bildung und Forschung

Thank you for your attention!

Motivation Experimental Results Summary

