Radioactivity measurements laboratory

## Trinitite

#### Radioactivity of trinitite after 62 years

#### Daniela Pittauerova



# Contents

- 1. 9 min of the movie Trinity and Beyond
- 2. Making the A-bomb
- 3. Trinity test
- 4. Trinitite: previous studies
- 5. Gamma analysis of trinitite in LMS
- 6. Comparing to earlier published data
- 7. Discussion



We waited until the blast had passed, walked out of the shelter and then it was extremely calm. We knew the world would not be the same. A few people laughed; a few people cried. Most people were silent. I remembered the line from the Hindu scripture,

"Now I become Death, the destroyer of worlds I suppose we all thought that, one way or another"



#### Robert Oppenheimer, Director, Los Alamos Laboratory

Photo: White Sands Missile Range web page: www.wsmr.army.mil



# Los Alamos Laboratory

- organized in 1943 to design a nuclear weapon
- 2 basic bomb designes:
  - in the first 2 years: gun type designed
  - later: solving problem of implosion design
- lots of uncertainties about the implosion weapon – it must be tested



Photo: American Physical Society web page: www.aps.org



# Nuclear weapon – gun type



From: Wikipedia









# Selection of site

- Trinity site selected of 8 possible sites
- Flat site: to minimize extraneous effect of the blast
- Good weather: large amount of optical information desired
- Minimum 20 km from the nearest settlement: to prevent the radiation hazards of people from fission products
- Minimum time loss in travel of personel and material (mainly from Los Alamos)
- Question of security and complete isolation of the activities of the test site from activities at Manhattan project



From: U.S. DOE site: www.doe.org



Radioactivity measurements laboratory





# The Jumbo test

- Jumbo: 7,6 m x 3 m, 214 t container
- it could contain the TNT explosion if the chain reaction failed
- Prevention of the Pu from being lost
- If the nuclear explosion occurred as theorized, Jumbo would be vaporized
- Growing confidence in the plutonium bomb design, concern about adding tons of radioactive steel vapour decision not to use Jumbo.

Photo: White Sands Missile Range web page: www.wsmr.army.mil





# The Jumbo test

Jumbo prior to the test...

and after...



Photos: White Sands Missile Range web page: www.wsmr.army.mil



# The Instrument test

- a simulated blast on 7 May 1945
- 100 tons of TNT: calibration of the instruments which would be measuring the atomic explosion and to practice a countdown
- small amount of radioactive material from Hanford

Photo: White Sands Missile Range web page: www.wsmr.army.mil





# Trinity test

- July 16<sup>th</sup> 1945 5:29 a.m. Mountain War Time: world's first nuclear explosion
- Place: Jornada del Muerto, near Alamogordo, New Mexico desert, 33,675 °N, 106,475 °W
- named by Los Alamos director R.
   Oppenheimer after a poem by John Donne
- yield: 21 kt TNT



**Photo**: White Sands Missile Range web page: www.wsmr.army.mil



Radioactivity measurements laboratory

## Ground zero

#### 1945



now



From: White Sands Missile Range web page: www.wsmr.army.mil



# Trinitite

- "a depressed area 400 yeards in radius glazed with a green, glasslike substance where the sand had melted and solified again" was found at Ground zero (physicist Herbert Anderson)
- Not a real mineral recognized by International Mineralogical Association





From: White Sands Missile Range web page: www.wsmr.army.milUndisturbed surfice of trinitite field14 of 38

# Previous studies - radioactivity

| Authors                                                                                                                                | From                                               | Journal      | Year | Methods                                                                             | Results                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------|------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TRINITITE                                                                                                                              |                                                    |              |      |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Atkatz and<br>Bragg                                                                                                                    | Skidmore College,<br>Saratoga Springs, NY,<br>USA  | Am. J. Phys. | 1995 | Nal(Tl) γ-<br>spectroscopy                                                          | <ul> <li><sup>137</sup>Cs and <sup>133m</sup>Ba<br/>determination</li> <li>yield calculation</li> </ul>                                                                                                                                                                                                                                                          |  |  |  |  |
| <u>Schlaf et al.</u>                                                                                                                   | Institut für<br>Kernchemie,<br>Universität Marburg | Am. J. Phys. | 1997 | Nal(Tl) γ-<br>spectroscopy,<br>HPGe γ-<br>spectroscopy                              | <ul> <li><sup>60</sup>Co, <sup>133</sup>Ba, <sup>137</sup>Cs,</li> <li><sup>152</sup>Eu, <sup>154</sup>Eu and</li> <li><sup>241</sup>Am determination</li> <li>yield calculation</li> </ul>                                                                                                                                                                      |  |  |  |  |
| <ul> <li>Parekh et al.</li> <li>New York state department of health, Albany, NY, USA</li> <li>University at Albany, NY, USA</li> </ul> |                                                    | J. Env. Rad. | 2006 | γ-spectroscopy,<br>radioachemistry,<br>α-spectroscopy,<br>low bkg betta<br>counting | <ul> <li><sup>60</sup>Co, <sup>90</sup>Sr, <sup>133</sup>Ba,</li> <li><sup>137</sup>Cs, <sup>152</sup>Eu, <sup>154</sup>Eu,</li> <li><sup>238</sup>Pu, <sup>239</sup>Pu, <sup>240</sup>Pu,</li> <li><sup>241</sup>Pu and <sup>241</sup>Am</li> <li>determination</li> <li><sup>40</sup>K, <sup>232</sup>Th and <sup>238</sup>U</li> <li>determination</li> </ul> |  |  |  |  |



#### Previous studies – Schlaf et al. 1997



**From**: Schlaf, Siemon, Weber, Esterlund, Molzahn and Patzelt: Trinitite redux: Comment on "Determining the yield of the Trinity nuclear device via gamma-ray spectroscopy," by David Atkatz and Christopher Bragg [Am. J. Phys. 63, 411-413 (1995)]. Am. J. Phys. 65, 1110-1112 (1997).





Ú



From: Parekh, Semkow, Torres, Haines, Cooper, Rosenberg, Kitto: Radioactivity in Trinitite six decades later. Journal of Environmental Radioactivity 85 (2006) 103-120.



#### Previous studies – Parekh et al. 2006

• Multiple pathways of producing radioactivity in trinitite



**From**: Parekh, Semkow, Torres, Haines, Cooper, Rosenberg, Kitto: Radioactivity in Trinitite six decades later. Journal of Environmental Radioactivity 85 (2006) 103-120.





Fig. 9. Gamma-ray spectrum of Trinitite sample A measured on a 131% Ge detector at 10 cm distance. Selected peak assignments are as follows (measured energies are reported): (1) 59.4-keV  $^{241}$ Am; (2) 121.7-keV  $^{152}$ Eu, 122.8-keV  $^{154}$ Eu; (3) 344.2-keV  $^{152}$ Eu; (4) 356.0-keV  $^{133}$ Ba; (5) 661.5-keV  $^{137}$ Cs; (6) 723.0-keV  $^{154}$ Eu; (7) 1173.4-keV  $^{60}$ Co; (8) 1274.3-keV  $^{152}$ Eu; (9) 1332.5-keV  $^{60}$ Co; (10) 1407.8-keV  $^{152}$ Eu; (11) 1460.8-keV  $^{40}$ K.

From: Parekh, Semkow, Torres, Haines, Cooper, Rosenberg, Kitto: Radioactivity in Trinitite six decades later. Journal of Environmental Radioactivity 85 (2006) 103-120.



# Previous studies - radioactivity

| Authors                          | From                                                                                                  | Journal                                               | Year | Methods                                               | Results                                                                                                                                                                                                            |  |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ALGERIA                          |                                                                                                       |                                                       |      |                                                       |                                                                                                                                                                                                                    |  |  |  |  |
| <u>Danessi et al.</u>            | IAEA                                                                                                  | Radiological<br>assessment<br>reports series,<br>IAEA | 2005 | γ-spectroscopy,<br>radioachemistry,<br>α-spectroscopy | <ul> <li>complex<br/>radionuclides<br/>determination in<br/>environmental<br/>media</li> <li>dose calculations</li> </ul>                                                                                          |  |  |  |  |
| SEMIPALATINS                     | K                                                                                                     |                                                       |      |                                                       |                                                                                                                                                                                                                    |  |  |  |  |
| <u>Yamamoto et</u><br><u>al.</u> | <ul> <li>Kanazawa<br/>University, Ishikawa,<br/>Japan</li> <li>Kyoto University,<br/>Japan</li> </ul> | Health Physics                                        | 1996 | γ-spectroscopy,<br>radioachemistry,<br>α-spectroscopy | <ul> <li>•γ: <sup>60</sup>Co, <sup>137</sup>Cs, <sup>152</sup>Eu, <sup>154</sup>Eu</li> <li>•α: <sup>238</sup>Pu, <sup>239,240</sup>Pu, <sup>237</sup>Np, <sup>241</sup>Pu and <sup>241</sup>Am in soil</li> </ul> |  |  |  |  |



#### Previous studies – Danessi et al., IAEA 2005

- The Gerboise test zone is a desert area situated 50 km south of Reggane oasis, Algeria
- 1960-61: Three of the atmospheric tests (Gerboise Bleue, Gerboise Rouge and Gerboise Verte) on a tower, one test at Gerboise Blanche on the ground



From: Danessi et al., IAEA 2005 Map of Regane area, where atmospheric tests were performed





#### Previous studies – Danessi et al., IAEA 2005

#### Sample Alg-4:

- 468 g of black fragments of fused sand
- crushed before measurement
- Ground Zero of Gerboise Bleue test ~ 60 kt TNT



**From:** Danessi et al., IAEA 2005 Black fragments of fused sand



#### Previous studies – Yamamoto et al. 1996

 Activity of soil (2-3 mm depth) at First experimental site, Semipalatinsk, Kazachstan near hypocenter of the first Soviet nuclear explosion (29.8.1949)



Universität Bremen



# **Previous studies**

| Authors                              | From                              | Journal                      | Year | Methods                                                                 | Results                                                                                                                                                                       |  |  |  |  |
|--------------------------------------|-----------------------------------|------------------------------|------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TRINITY SITE                         |                                   |                              |      |                                                                         |                                                                                                                                                                               |  |  |  |  |
| <u>Hermes,</u><br><u>Strickfaden</u> | Los Alamos National<br>Laboratory | Nuclear<br>Weapon<br>Journal | 2005 | Non-radiological<br>study                                               | <ul> <li>Yeald calculation</li> <li>Fireball<br/>temperature</li> <li>Fireball duration</li> <li>Heat in the rising<br/>fireball</li> <li>Spread of the<br/>ejecta</li> </ul> |  |  |  |  |
| <u>Hermes et al.</u>                 | Los Alamos National<br>Laboratory | Not published<br>yet         |      | Micro x-ray<br>fluorescence<br>Gamma, beta<br>and alpha<br>spectroscopy | Continuous study<br>on trinitite and<br>beads                                                                                                                                 |  |  |  |  |



#### Previous studies – Hermes, Strickfaden 2005

- Using (non-radiological) properties of trinitite back-calculated:
  - yield of the bomb: 9-18 kt + 4,2 kt carried away by the mushroom cloud
  - avarage fireball temperature of 8430 K and duration of the fireball: 3,1 s
  - crater depth of: 4 ft 1,4 m





#### Previous studies – Hermes, Strickfaden 2005

- trinitite was formed not by simple heating and melting the sand
- instead: blasting the material to the air and raining down in the form of little droplets
- ground itself hot forming a layer of trinitite
- trinitite more radioactive at the top glassy side than at the bottom sandlike side beads even more radioactive
- study of trinitite and small trinitite beads in anthills





Radioactivity measurements laboratory

# Previous studies – Hermes, Strickfaden unpublished



Ants bring up and collect trinitite and beads from the area

Micro x-ray fluorescence image –green coating at the top of red trinitite



# Our sample

- mass: 2,2 g
- price: \$25 🙂





Upper side



Bottom side



# Gamma-analysis

- Using HPGe detector No. 3
- Canberra software Genie2000
- Modelled geometry in ISOCS Geometry Composer:
  - cylinder: diameter 20 mm,

hight 5 mm

- material: glass
- density: 2,6 g/cm<sup>3</sup>









### Comparing measured activities

(recalculated to 1945)

| Isotope           | Half-life<br>[yr] | Unit | Atkatz | Schlauf et al. | Pareth et al.                    | LMS                     |
|-------------------|-------------------|------|--------|----------------|----------------------------------|-------------------------|
| <sup>60</sup> Co  | 5,271             | Bq/g | -      | 44 ± 4         | $44,4 \pm 4,6$<br>$62,0 \pm 4,9$ | <37,8<br>(not present)  |
| <sup>137</sup> Cs | 30,0              | Bq/g | 83,2   | 90 ± 9         | 27,33 ± 0,08<br>121,8 ± 0,1      | $16,20 \pm 0,86$        |
| <sup>133</sup> Ba | 10,54             | Bq/g | -      | $9,9 \pm 0,6$  | 7,55 ± 0,45<br>9,80 ± 0,26       | 4,40 ± 0,41             |
| <sup>152</sup> Eu | 13,33             | Bq/g | -      | 27 ± 1         | 22,61 ± 0,38<br>78,89 ± 0,61     | 17,22 ± 1,3             |
| <sup>154</sup> Eu | 8,8               | Bq/g | -      | $4,8 \pm 0,6$  | 2,45 ± 0,60<br>16,1 ± 1,3        | <3,3<br>(visible peaks) |



Radioactivity measurements laboratory

#### Comparing measured activities

(recalculated to 2007 – except <sup>241</sup>Am)

| Isotope           | Half-<br>life<br>[yr] | Unit  | Atkatz | Schlauf et<br>al.   | Pareth et al.                            | Yamamoto<br>et al.<br>Semipalatinsk | Danessi<br>et al.<br>Algeria | LMS                      |
|-------------------|-----------------------|-------|--------|---------------------|------------------------------------------|-------------------------------------|------------------------------|--------------------------|
| 60 <b>Co</b>      | 5,271                 | Bq/kg | -      | 13,0 ± 1,2          | 13,1 ± 1,4<br>18,3 ± 1,4                 | 1040 ± 23                           | 370                          | <11,5<br>(not present)   |
| <sup>137</sup> Cs | 30,0                  | Bq/g  | 20,0   | 21,7 ± 2,2          | 6,58 ± 0,02<br>29,30 ± 0,02              | 64,4 ± 0,5                          | 26,5                         | 3,94 ± 0,21              |
| <sup>133</sup> Ba | 10,54                 | Bq/kg | -      | 170 ± 10            | 130 ± 8<br>168 ± 5                       | -                                   | 2234                         | 75,6 ± 6,3               |
| <sup>152</sup> Eu | 13,33                 | Bq/kg | -      | 1085 ± 40           | 909 ± 15<br>3172 ± 25                    | 50060 ± 520                         | 4742                         | 748 ± 44                 |
| <sup>154</sup> Eu | 8,8                   | Bq/kg | -      | 36,9 ± 4,6          | 18,8 ± 4,6<br>124 ± 10                   | 1084 ± 48                           | 683                          | <22,8<br>(visible peaks) |
| <sup>241</sup> Am | 432,7                 | Bq/g  | -      | 2,9 ± 0,5<br>(1997) | 1,841 ± 0,053<br>4,137 ± 0,058<br>(2006) | 0,52 ± 0,01<br>(1994)               | 2,3<br>(1999)                | 0,734 ± 0,046<br>(2007)  |



#### Origin of radionuclides

| Isotope               | Half-life/ yr | Origin                                                                                                                                     |
|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>137</sup> Cs     | 30,0          | fission product (beta decay of <sup>137</sup> Xe and <sup>137</sup> I and also independently)                                              |
| <sup>60</sup> Co      | 5,271         | activation of <sup>59</sup> Co – from test tower steel and from soil                                                                       |
| <sup>133</sup> Ba     | 10,54         | activation of <sup>132</sup> Ba – Ba part of explosive lense system                                                                        |
|                       |               | (Ba (NO <sub>3</sub> ) <sub>2</sub> - Baratol)                                                                                             |
| <sup>152,154</sup> Eu | 13,33 / 8,8   | activation of stable isotopes <sup>151,153</sup> Eu in soil by slow neutrons                                                               |
| <sup>241</sup> Am     | 432,2         | mostly by beta decay daughter of <sup>241</sup> Pu, produced mainly from <sup>239</sup> Pu during the explosion via double-neutron capture |
| <sup>239</sup> Pu     | 24100         | fuel                                                                                                                                       |



#### Comparing measured activities

(natural radionuclides)

| Isotope              | Half-life [yr] | Unit  | Pareth et al.  | LMS                  |
|----------------------|----------------|-------|----------------|----------------------|
| 4012                 | 1 077 109      | Pa/ka | 741 ± 15       | 022 + 77             |
| -*° <b>N</b>         | 1,277.10°      | Бү/ку | 846 ± 18       | 922 ± 11             |
| <sup>232</sup> Th    | 4 405 4010     | Bq/kg | 27,5 ± 3,5     | 44,5 ± 4,4           |
| ( <sup>228</sup> Ac) | 1,405.10       |       | 35,9 ± 5,1     | ( <sup>212</sup> Pb) |
| <sup>238</sup> U     | 4 469 409      | Bq/kg | 32,3 ± 3,1     | 40 E + E C           |
| ( <sup>214</sup> Pb) | 4,408.103      |       | $40,4 \pm 8,3$ | 40,0 ± 0,0           |



# Discussion



- Specific activities of anthropogenic radionuclides in "our" sample generally lower – about ½ - comparing to previously reported values
- not applied summing corrections for <sup>133</sup>Ba and <sup>152</sup>Eu
- but: natural radionuclides in a very good agreement with previous studies
- unknown distance and position of the sample from GZ influence of neutron flux, temperature
- not even 100% certain that the sample comes from original Trinity test



# Further reading

BOOKS:



- Richard Rhodes: *The Making of the Atomic Bomb*, Simon and Schuster 1986, New York
- Ferene Szasz: *The Day the Sun Rose Twice*, University of New Mexico Press 1984, Albuquerque
- Robert Jungk: *Brighter than a Thousand Suns*, 1958

#### INTERNET:

- K. T. Bainbridge: *Trinity*. LANL report, 1976. Download from the Los Alamos National Laboratory website http://www.lanl.gov/history/atomicbomb/trinity.shtml
- Web page of White Sands Missile Range http://www.wsmr.army.mil



# Thanks to Nic for the trinitite and books & you for your attention!



